Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Int J Antimicrob Agents ; 62(1): 106846, 2023 07.
Article in English | MEDLINE | ID: covidwho-2315903

ABSTRACT

The COVID-19 pandemic has highlighted the detrimental effect of secondary pathogens in patients with a primary viral insult. In addition to superinfections with bacterial pathogens, invasive fungal infections were increasingly reported. The diagnosis of pulmonary fungal infections has always been challenging; however, it became even more problematic in the setting of COVID-19, particularly regarding the interpretation of radiological findings and mycology test results in patients with these infections. Moreover, prolonged hospitalization in ICU, coupled with underlying host factors. such as preexisting immunosuppression, use of immunomodulatory agents, and pulmonary compromise, caused additional vulnerability to fungal infections in this patient population. In addition, the heavy workload, redeployment of untrained staff, and inconsistent supply of gloves, gowns, and masks during the COVID-19 outbreak made it harder for healthcare workers to strictly adhere to preventive measures for infection control. Taken together, these factors favored patient-to-patient spread of fungal infections, such as those caused by Candida auris, or environment-to-patient transmission, including nosocomial aspergillosis. As fungal infections were associated with increased morbidity and mortality, empirical treatment was overly used and abused in COVID-19-infected patients, potentially contributing to increased resistance in fungal pathogens. The aim of this paper was to focus on essential elements of antifungal stewardship in COVID-19 for three fungal infections, COVID-19-associated candidemia (CAC), -pulmonary aspergillosis (CAPA), and -mucormycosis (CAM).


Subject(s)
COVID-19 , Candidemia , Humans , Antifungal Agents/therapeutic use , COVID-19/epidemiology , Pandemics , Candidemia/drug therapy , Fungi
2.
preprints.org; 2023.
Preprint in English | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202305.0783.v1

ABSTRACT

Invasive fungal infections, notably candidemia, have been associated with COVID-19. The epidemiology of candidemia has significantly changed during the COVID-19 pandemic. We aim to identify the microbiological profile, resistance rates, and outcomes of COVID-19 associated candidemia (CAC) compared to patients with candidemia not associated with COVID-19. We retrospectively collected data on patients with candidemia admitted to the American University of Beirut Medical Center between 2004 and 2022. We compared the epidemiology of candidemia during and prior to the COVID-19 pandemic. Additionally, we compared the outcomes of critically ill patients with CAC to those with candidemia without COVID-19 from March 2020 till March 2022. Among 245 candidemia episodes, 156 occurred prior to the pandemic and 89 during the pandemic. Of the latter, 39 (43.8%) were CAC, most of which (82%) were reported from intensive care units (ICU). Non-albicans Candida (NAC) spp. were predominant throughout the study period (67.7%). Candida auris infection was the most common cause of NAC spp. in CAC. C. glabrata had decreased susceptibility rates to fluconazole and caspofungin during the pandemic period (46.1% and 38.4% respectively). Mortality rate in the overall ICU population during the pandemic was 76.6%, much higher than the previously reported mortality of candidemia from previous studies at our center. There was no significant difference in 30-day mortality between CAC and non-CAC (75.0% vs 78.1%; P =0.76). Performing ophthalmic examination (P = 0.002), CVC removal during the 48 hours following the candidemia (P = 0.008) and identifying the Candida spp. (P = 0.028) were significantly associated with a lower case-fatality rate. The epidemiology of candidemia has been significantly affected by the COVID-19 pandemic at our center. Rigorous infection control measures and proper antifungal stewardship are essential to combat highly resistant species like C. auris.


Subject(s)
Rigor Mortis , Mycoses , Critical Illness , Candidemia , COVID-19
4.
J Infect Chemother ; 29(7): 713-717, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2274747

ABSTRACT

Candida auris is a health hazard because of its antifungal resistance and the potential to cause healthcare-associated outbreaks. To our knowledge, no previous cases of candidemia caused by C. auris have been reported in Japan. Herein, we report the first known case of clade I C. auris candidemia in a Japanese man with coronavirus disease 2019 (COVID-19) infection who was medically evacuated from the Philippines. A 71-year-old Japanese man traveled to Cebu Island in the Philippines 5 months before admission to our hospital. He contracted severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the Philippines and was admitted to the intensive care unit (ICU) in a local hospital. During his medical evacuation, we implemented precautions given his history of COVID-19 and pneumonia caused by multi-drug-resistant Acinetobacter baumannii complex. His blood culture revealed that C. auris infection was treated with antifungal agents but he did not survive. No evidence of nosocomial transmission was found among other patients in the ICU. This case study determines that accurate detection of C. auris, appropriate antifungal agent selection, precautions, and patient isolation are crucial to prevent nosocomial outbreaks, especially in patients with a history of multidrug-resistant organism (MDRO) colonization or international hospitalization. Medical professionals should recognize the risk of MDROs in international medical evacuation settings, considering the recent resumption of cross-border travel after the COVID-19 pandemic.


Subject(s)
COVID-19 , Candidemia , Cross Infection , Male , Humans , Aged , Candidemia/microbiology , Candida auris , Candida , COVID-19/epidemiology , Pandemics , Japan , SARS-CoV-2 , Microbial Sensitivity Tests , Philippines , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Cross Infection/microbiology
5.
Pol J Microbiol ; 71(3): 411-419, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-2254047

ABSTRACT

The frequency of opportunistic fungal infections in critically ill patients whose intensive care unit stays are prolonged due to coronavirus disease 2019 (COVID-19) is higher than in the period before COVID-19. We planned this study to improve the management of Candida infections by defining the Candida species, the etiology of infections caused by Candida species, and the antifungal susceptibility of the species. This retrospective study included patients older than 18 hospitalized in the intensive care unit (ICU) with a definitive diagnosis of COVID-19 for seven months (from March 2021 to September 2021). All study data that we recorded in a standard study form were analyzed with TURCOSA (Turcosa Analytics Ltd. Co., Turkey, www.turcosa.com.tr) statistical software. The patients were evaluated in four groups as group 1 (candidemia patients, n = 78), group 2 (candiduria patients, n = 189), group 3 (control patients, n = 57), and group 4 (patients with candidemia in urine cultures taken before Candida was detected in blood culture, n = 42). Candida species were identified using both conventional and VITEK® 2 (BioMérieux, France) methods. The antifungal susceptibility of fungi was determined using the E test method. Of the 5,583 COVID-19 patients followed during the study period, 78 developed candidemia, and 189 developed candiduria. The incidence of candidemia (per 1,000 admissions) was determined to be 1.6. As a result of statistical analysis, we found that Candida albicans was the dominant strain in candidemia and candiduria, and there was no antifungal resistance except for naturally resistant strains. Candida strains grown in blood and urine were the same in 40 of 42 patients. Mortality was 69.2% for group 1, 60.4% for group 2, and 57.8% for group 3. Antifungals were used in 34 (43.5%) patients from group 1, and 95 (50.2%) from group 2. In the candidemia group without antifungal use, mortality was quite high (77.2%). Antifungal use reduced mortality in the group 2 (p < 0.05). Length of ICU stays, comorbidity, broad-spectrum antibiotics, and corticosteroids are independent risk factors for candidemia in critically ill COVID-19 patients. Our study contributes to the knowledge of risk factors for developing COVID-19-related candida infections. The effect of candiduria on the development of candidemia in critically ill COVID-19 patients should be supported by new studies.


Subject(s)
COVID-19 , Candidemia , Candidiasis , Opportunistic Infections , Urinary Tract Infections , Anti-Bacterial Agents , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida , Candidemia/diagnosis , Candidemia/drug therapy , Candidemia/epidemiology , Candidiasis/drug therapy , Candidiasis/epidemiology , Critical Illness , Humans , Retrospective Studies , Risk Factors , Urinary Tract Infections/microbiology
6.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2730832.v1

ABSTRACT

Background: Candida auris is an emerging yeast pathogen that can cause invasive infections, particularly candidemia in healthcare settings.  Candida auris is characterized by resistance to multiple classes of antifungal drugs and high mortality. Objective: To describe the risk factors, clinical characteristics, antifungal susceptibility pattern and outcomes of Candida auris blood stream infection. Methods: We conducted a retrospective review of electronic medical records of C. auris fungemia cases in the facilities under Hamad Medical corporation, Qatar from 1/11/2018 to 31/7/2021. Demographic data, risk factors, antibiogram and 30-day outcome are described Results: We identified 36 patients with C. auris fungemia. Most of the patients were in intensive care unit following severe covid-19 pneumonia and had received steroid and broad-spectrum antibiotics. Most of the cases were central line related.  Over 90% of isolates were non-susceptible to fluconazole. Amphotericin B sensitivity was only 15.2 %. Isolates from all patients were sensitive to echinocandins and these were used as first line therapy. Factors associated with high mortality included initial SOFA score of 9 or above and whether source control was attained.  Conclusion: 30-day mortality rate in Candida auris candidemia is 41.6%. Amphotericin B resistance in Qatar is much higher compared to published literature. Echinocandins are the drugs of choice for treatment, retaining almost 100% susceptibility.


Subject(s)
Fungemia , Neoplasm Invasiveness , Pneumonia , Candidemia , COVID-19
7.
Acta Medica (Hradec Kralove) ; 65(3): 83-88, 2022.
Article in English | MEDLINE | ID: covidwho-2234703

ABSTRACT

Candidemia is one of the significant causes of mortality amongst critically ill patients in Intensive Care Units (ICUs). This study aimed to assess the incidence, risk factors and antifungal susceptibility pattern in candidemia cases admitted in ICU in a tertiary care hospital in Jaipur, Rajasthan from June 2021 to November 2021. Candida species isolated from blood culture of clinically suspected patients of sepsis were defined as candidemia cases. Blood culture and antifungal susceptibility testing were performed as per standard laboratory protocol. Analyses of risk factors was done between candidemia cases and matched controls in a ratio of 1 : 3. Forty-six candidemic cases and 150 matched controls were included in the study. C. tropicalis was the most prevalent species (22/46; 48%) followed by C. auris (8/46; 17%) and C. albicans (7/46; 15%). Candida species showed good sensitivity to echinocandins (97%) followed by amphotericin B (87%) and voriconazole (80%). In multivariate analysis, longer stay in ICU, presence of an indwelling device, use of immunosuppressive drugs and positive SARS-CoV-2 infection were associated with increased risk of candidemia. The constant evaluation of risk factors is required as prediction of risks associated with candidemia may help to guide targeted preventive measures with reduced morbidity and mortality.


Subject(s)
COVID-19 , Candidemia , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candidemia/epidemiology , Candidemia/microbiology , Case-Control Studies , India/epidemiology , SARS-CoV-2 , Candida , Intensive Care Units , Risk Factors
8.
Infect Dis (Lond) ; 55(4): 263-271, 2023 04.
Article in English | MEDLINE | ID: covidwho-2233063

ABSTRACT

BACKGROUND: Invasive fungal infections acquired in the intensive care unit (AFI) are life-threating complications of critical illness. However, there is no consensus on antifungal prophylaxis in this setting. Multiple site decontamination is a well-studied prophylaxis against bacterial and fungal infections. Data on the effect of decontamination regimens on AFI are lacking. We hypothesised that multiple site decontamination could decrease the rate of AFI in mechanically ventilated patients. METHODS: We conducted a pre/post observational study in 2 ICUs, on adult patients who required mechanical ventilation for >24 h. During the study period, multiple-site decontamination was added to standard of care. It consists of amphotericin B four times daily in the oropharynx and the gastric tube along with topical antibiotics, chlorhexidine body wash and nasal mupirocin. RESULTS: In 870 patients, there were 27 AFI in 26 patients. Aspergillosis accounted for 20/143 of ventilator-associated pneumonia and candidemia for 7/75 of ICU-acquired bloodstream infections. There were 3/308 (1%) patients with AFI in the decontamination group and 23/562 (4%) in the standard-care group (p = 0.011). In a propensity-score matched analysis, there were 3/308 (1%) and 16/308 (5%) AFI in the decontamination group and the standard-care group respectively (p = 0.004) (3/308 vs 11/308 ventilator-associated pulmonary aspergillosis, respectively [p = 0.055] and 0/308 vs 6/308 candidemia, respectively [p = 0.037]). CONCLUSION: Acquired fungal infection is a rare event, but accounts for a large proportion of ICU-acquired infections. Our study showed a preventive effect of decontamination against acquired fungal infection, especially candidemia.Take home messageAcquired fungal infection (AFI) incidence is close to 4% in mechanically ventilated patients without antifungal prophylaxis (3% for pulmonary aspergillosis and 1% for candidemia).Aspergillosis accounts for 14% of ventilator-associated pneumonia and candidemia for 9% of acquired bloodstream infections.Immunocompromised patients, those infected with SARS-COV 2 or influenza virus, males and patients admitted during the fall season are at higher risk of AFI.Mechanically ventilated patients receiving multiple site decontamination (MSD) have a lower risk of AFI.


Subject(s)
Aspergillosis , COVID-19 , Candidemia , Cross Infection , Pneumonia, Ventilator-Associated , Pulmonary Aspergillosis , Male , Adult , Humans , Pneumonia, Ventilator-Associated/prevention & control , Pneumonia, Ventilator-Associated/complications , Respiration, Artificial/adverse effects , Decontamination , Antifungal Agents/therapeutic use , Cross Infection/prevention & control , Cross Infection/epidemiology , COVID-19/etiology , Intensive Care Units , Pulmonary Aspergillosis/complications
9.
Mycoses ; 66(6): 483-487, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2228006

ABSTRACT

BACKGROUND: Studies evaluating outcomes of COVID-19 patients with candidemia are limited and have only evaluated a single timepoint during the pandemic. OBJECTIVES: To compare the prevalence and outcomes associated with candidemia in patients based on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) status and through the various pandemic waves (1 March 2020-5 March 2022). PATIENTS/METHODS: Multicentre, retrospective cohort analysis of data from 248 US medical facilities using the BD Insights Research Database (Becton, Dickinson and Company, Franklin Lakes, New Jersey, USA). Eligible patients were adults aged ≥18 years who were hospitalised for >1 day, had a SARS-CoV-2 test and a positive blood culture for Candida spp. RESULTS: During the study time frame, there were 2,402,879 hospital admissions; 234,903 (9.7%) and 2,167,976 (90.3%) patients were SARS-CoV-2 positive and negative, respectively. A significantly higher rate of candidemia/1000 admissions was observed in SARS-CoV-2-positive patients compared to SARS-CoV-2-negative patients (3.18 vs. 0.99; p < .001). The highest candidemia rate for SARS-CoV-2-positive patients was observed during the Alpha SARS-CoV-2 wave (June 2020-August 2020) with the lowest candidemia rate during the Omicron wave. Hospital mortality was significantly higher in SARS-CoV-2-positive patients compared to SARS-CoV-2-negative patients with candidemia (59.6% vs. 30.8%; p < .001). When evaluating the mortality rate through the various pandemic waves, the rate for the overall population did not change. CONCLUSIONS: Our study indicates high morbidity and mortality for hospitalised patients with COVID-19 and candidemia which was consistent throughout the pandemic. Patients with COVID-19 are at an increased risk for candidemia; importantly, the magnitude of which may differ based on the circulating variant.


Subject(s)
COVID-19 , Candidemia , Adult , Humans , Adolescent , SARS-CoV-2 , Candidemia/epidemiology , COVID-19/epidemiology , Pandemics , Retrospective Studies , Hospitals , Morbidity
10.
Viruses ; 14(12)2022 12 14.
Article in English | MEDLINE | ID: covidwho-2163622

ABSTRACT

BACKGROUND: The range of reported rates of bacterial and fungal superinfections in patients with a severe course of COVID-19 is wide, suggesting a lack of standardised reporting. METHODS: The rates of bacterial and fungal superinfection were assessed using predefined criteria to differentiate between infection and contamination. RESULTS: Overall, 117 patients admitted to the Intensive Care Unit due to severe COVID-19 were included. Overall, 55% of patients developed a superinfection and 13.6% developed a fungal superinfection (5.9% candidemia and 7.7% CAPA). The rate of ventilator-associated pneumonia was 65.2%. If superinfection was detected, the length of hospital stay was significantly longer and the mortality was especially increased if candidemia was detected. An increased risk of superinfection was observed in patients with pre-existing diabetes mellitus or chronic heart failure. The presence of immunomodulating therapy did not seem to have an impact on the frequency of superinfections. CONCLUSION: Increased awareness of high superinfection rates, fungal infections in particular, in patients suffering from severe COVID-19 is necessary.


Subject(s)
COVID-19 , Candidemia , Superinfection , Humans , COVID-19/complications , Hospitalization , Length of Stay
11.
Emerg Microbes Infect ; 11(1): 2264-2274, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2008478

ABSTRACT

Patients presenting with severe COVID-19 are predisposed to acquire secondary fungal infections such as COVID-19-associated candidemia (CAC), which are associated with poor clinical outcomes despite antifungal treatment. The extreme burden imposed on clinical facilities during the COVID-19 pandemic has provided a permissive environment for the emergence of clonal outbreaks of multiple Candida species, including C. auris and C. parapsilosis. Here we report the largest clonal CAC outbreak to date caused by fluconazole resistant (FLZR) and echinocandin tolerant (ECT) C. parapsilosis. Sixty C. parapsilosis strains were obtained from 57 patients at a tertiary care hospital in Brazil, 90% of them were FLZR and ECT. Although only 35.8% of FLZR isolates contained an ERG11 mutation, all of them contained the TAC1L518F mutation and significantly overexpressed CDR1. Introduction of TAC1L518F into a susceptible background increased the MIC of fluconazole and voriconazole 8-fold and resulted in significant basal overexpression of CDR1. Additionally, FLZR isolates exclusively harboured E1939G outside of Fks1 hotspot-2, which did not confer echinocandin resistance, but significantly increased ECT. Multilocus microsatellite typing showed that 51/60 (85%) of the FLZR isolates belonged to the same cluster, while the susceptible isolates each represented a distinct lineage. Finally, biofilm production in FLZR isolates was significantly lower than in susceptible counterparts Suggesting that it may not be an outbreak determinant. In summary, we show that TAC1L518F and FKS1E1393G confer FLZR and ECT, respectively, in CAC-associated C. parapsilosis. Our study underscores the importance of antifungal stewardship and effective infection control strategies to mitigate clonal C. parapsilosis outbreaks.


Subject(s)
COVID-19 , Candidemia , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Brazil/epidemiology , COVID-19/epidemiology , Candida parapsilosis/genetics , Candidemia/drug therapy , Candidemia/epidemiology , Candidemia/microbiology , Disease Outbreaks , Echinocandins/pharmacology , Echinocandins/therapeutic use , Fluconazole/pharmacology , Fluconazole/therapeutic use , Humans , Intensive Care Units , Microbial Sensitivity Tests , Pandemics , Voriconazole/therapeutic use
12.
J Infect Chemother ; 28(10): 1433-1435, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1936795

ABSTRACT

Candida dubliniensis phenotypically mimics Candida albicans in its microbiological features; thus, its clinical characteristics have yet to be fully elucidated. Here we report the case of a 68-year-old Japanese man who developed C. dubliniensis fungemia during treatment for severe coronavirus disease 2019 (COVID-19). The patient was intubated and received a combination of immunosuppressants, including high-dose methylprednisolone and two doses of tocilizumab, as well as remdesivir, intravenous heparin, and ceftriaxone. A blood culture on admission day 11 revealed Candida species, which was confirmed as C. dubliniensis by mass spectrometry. An additional sequencing analysis of the 26S rDNA and ITS regions confirmed that the organism was 100% identical to the reference strain of C. dubliniensis (ATCC MYA-646). Considering the simultaneous isolation of C. dubliniensis from a sputum sample, the lower respiratory tract could be an entry point for candidemia. Although treatment with micafungin successfully eradicated the C. dubliniensis fungemia, the patient died of COVID-19 progression. In this case, aggressive immunosuppressive therapy could have caused the C. dubliniensis fungemia. Due to insufficient clinical reports on C. dubliniensis infection based on definitive diagnosis, the whole picture of the cryptic organism is still unknown. Further accumulation of clinical and microbiological data of the pathogen is needed to elucidate their clinical significance.


Subject(s)
COVID-19 , Candidemia , Fungemia , Aged , COVID-19/complications , Candida , Candida albicans , Candidemia/diagnosis , Candidemia/drug therapy , Candidemia/microbiology , Fungemia/diagnosis , Fungemia/drug therapy , Fungemia/microbiology , Humans , Male
13.
Respir Med Res ; 82: 100937, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1914955

ABSTRACT

PURPOSE: To evaluate the management of patients with COVID-19 in the intensive care units (ICUs) with fungal infection/colonization and to highlight diagnostic problems in these patients. METHODS: We included all patients with a COVID-19 diagnosis who were aged ≥18 years and followed in the ICU for the first 8 months. Patient data were obtained from medical records. We compared the risk factors, laboratory data, and outcomes of patients with fungal infection/colonization. RESULTS: A total of 118 patients (81 men and 37 women) were included. The mean age was 70.3 ± 14.8 (35-94) years. Of the patients, 79 (66.9%) patients were ≥65 years old. Fungal infection/colonization was detected in 39 (33.1%) patients. Fungi were isolated from 34 (28.8%) patients. Ten fungal species were isolated from 51 samples (the most common being Candida albicans). Three patients (2.5%) had proven candidemia. We observed two (1.7%) possible cases of COVID-19-associated pulmonary aspergillosis (CAPA). Eighteen patients (15.3%) underwent antifungal therapy. The risk of fungal infection/colonization increased as the duration of invasive mechanical ventilation increased. The fatality rate was 61.9% and increased with age and the use of mechanical ventilation. The fatality rate was 4.2-times-higher and the use of mechanical ventilation was 35.9-times-higher in the patients aged ≥65 years than in the patients aged <65 years. No relationship was found between fungal colonization/infection, antifungal treatment, and the fatality rate. CONCLUSION: During the pandemic, approximately one-third of the patients in ICUs exhibited fungal infection/colonization. Candida albicans was the most common species of fungal infection as in the pre-pandemic area. Because of the cross-contamination risk, we did not performed diagnostic bronchoscopy and control thorax computed tomography during the ICU stay, and our patients mainly received empirical antifungal therapy.


Subject(s)
COVID-19 , Candidemia , Candidiasis , Male , Humans , Female , Adolescent , Adult , Middle Aged , Aged , Aged, 80 and over , Candidiasis/diagnosis , Candidiasis/drug therapy , Candidiasis/microbiology , Antifungal Agents/therapeutic use , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , COVID-19 Testing , Tertiary Care Centers , Intensive Care Units , Candidemia/drug therapy , Candida albicans
14.
Microbiol Spectr ; 10(3): e0014022, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1891745

ABSTRACT

A high rate of bacterial and fungal superinfections was reported in critically ill patients with COVID-19. However, diagnosis can be challenging. The aim of this study is to evaluate the sensitivity and the clinical utility of the point-of-care method T2 magnetic resonance (T2MR) with the gold standard: the blood culture. T2MR can potentially detect five different Candida species and six common bacteria (so-called "ESKAPE" pathogens including Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinet`obacter baumanii, Pseudomonas aeruginosa, and Enterococcus faecium). If superinfection was suspected in patients with COVID-19 admitted to the intensive care unit, blood culture and two panels of T2MR were performed. Eighty-five diagnostic bundles were performed in 60 patients in total. T2MR detected an ESKAPE pathogen in 9 out of 85 (10.6%) samples, compared to BC in 3 out of 85 (3.5%). A Candida species was detected in 7 of 85 (8.2%) samples of T2MR compared to 1 out of 85(1.2%) in blood culture. The mean time to positive test result in samples with concordant positive results was 4.5 h with T2MR and 52.5 h with blood culture. The additional use of T2MR enables a highly sensitive and rapid detection of ESKAPE and Candida pathogens. IMPORTANCE Coronavirus disease 2019 (COVID-19) has led to a high number of deaths since the beginning of the pandemic worldwide. One of the reasons is the high number of bacterial and fungal superinfections in patients suffering from critical disease. However, diagnosis is often challenging. In this study we could show that the additional use of the culture-independent method T2MR did not only show a much higher detection rate of bacterial and fungal pathogens but also a significantly shorter time until detection and therapy change compared to the gold standard: the blood culture. The implementation of T2MRin the care of patients with severe course of COVID-19 might lead to an earlier sufficient antimicrobial therapy and as a result lower mortality and less use of broad-spectrum unnecessary therapy reducing the risk of resistance development.


Subject(s)
COVID-19 , Candidemia , Enterococcus faecium , Superinfection , Anti-Bacterial Agents/therapeutic use , Blood Culture , COVID-19/diagnosis , Candida , Candidemia/diagnosis , Candidemia/drug therapy , Candidemia/microbiology , Escherichia coli , Humans , Magnetic Resonance Spectroscopy/methods , Superinfection/drug therapy
15.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.06.22275514

ABSTRACT

Background: Candida parapsilosis is a frequent cause of candidemia worldwide. Its incidence is associated with the use of medical implants, such as central venous catheters or parenteral nutrition. This species has reduced susceptibility to echinocandins and is susceptible to polyenes and azoles. Multiple outbreaks caused by fluconazole non-susceptible strains have been reported recently. A similar trend has been observed among the C. parapsilosis isolates received in the last two years at the Spanish Mycology Reference Laboratory. Methods: Yeast were identified by molecular biology and antifungal susceptibility testing was performed using EUCAST protocol. ERG11 gene was sequenced to identify resistance mechanisms, and typification was carried out by microsatellite analysis. Results: We examined the susceptibility profile of the C. parapsilosis isolates available at our Reference Laboratory since 2000 (around 1,300 strains). During the last two years, the number of isolates with acquired resistance to fluconazole and voriconazole has increased in at least eight different Spanish hospitals. Typification of the isolates revealed that some prevalent clones had spread through several hospitals of the same geographical region. One of these clones was found in hospitals from the region of Catalonia, another in hospitals from Madrid and Burgos, and two other different genotypes from Santander. Conclusions: Our data suggests that the epidemiological situation caused by the COVID-19 pandemic might have induced a selection of fluconazole-resistant C. parapsilosis isolates that were already present at the hospitals. Further measures must be taken to avoid the establishment of clinical outbreaks that could threaten the life of infected patients.


Subject(s)
COVID-19 , Candidemia , Infections
16.
Braz J Infect Dis ; 26(2): 102353, 2022.
Article in English | MEDLINE | ID: covidwho-1803608

ABSTRACT

BACKGROUND: Patients with severe Coronavirus Disease 2019 (COVID-19) are treated with corticosteroids. AIM: We aimed to evaluate the role of corticosteroid treatment in candidemia development during the COVID-19 pandemic. METHODS: This retrospective study was conducted in a Greek ICU, from 2010 to August 2021, encompassing a pre-pandemic and a pandemic period (pandemic period: April 2020 to August 2021). All adult patients with candidemia were included. RESULTS: During the study period, 3,572 patients were admitted to the ICU, 339 patients during the pandemic period, of whom 196 were SARS-CoV-2-positive. In total, 281 candidemia episodes were observed in 239 patients, 114 in the pandemic period. The majority of candidemias in both periods were catheter-related (161; 50.4%). The incidence of candidemia in the pre-pandemic period was 5.2 episodes per 100 admissions, while in the pandemic period was 33.6 (p < 0.001). In the pandemic period, the incidence among COVID-19 patients was 38.8 episodes per 100 admissions, while in patients without COVID-19 incidence was 26.6 (p = 0.019). Corticosteroid administration in both periods was not associated with increased candidemia incidence. CONCLUSIONS: A significant increase of candidemia incidence was observed during the pandemic period in patients with and without COVID-19. This increase cannot be solely attributed to immunosuppression (corticosteroids, tocilizumab) of severe COVID-19 patients, but also to increased workload of medical and nursing staff.


Subject(s)
COVID-19 , Candidemia , Adrenal Cortex Hormones/adverse effects , Adult , Candidemia/epidemiology , Critical Illness/epidemiology , Humans , Incidence , Intensive Care Units , Pandemics , Retrospective Studies , SARS-CoV-2
17.
Mycoses ; 65(6): 613-624, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1794602

ABSTRACT

BACKGROUND: Candida auris is an emerging multidrug-resistant pathogen in intensive care settings (ICU). During the coronavirus disease 19 (COVID-19) pandemic, ICU admissions were overwhelmed, possibly contributing to the C. auris outbreak in COVID-19 patients. OBJECTIVES: The present systematic review addresses the prevalence, underlying diseases, iatrogenic risk factors, treatment and outcome of C. auris infections in COVID-19 patients. METHODS: MEDLINE, Scopus, Embase, Web of Science and LitCovid databases were systematically searched with appropriate keywords from 1 January 2020 to 31 December 2021. RESULTS: A total of 97 cases of C. auris were identified in COVID-19 patients. The pooled prevalence of C. auris infections (encompassing candidemia and non-candidemia cases) in COVID-19 patients was 14%. The major underlying diseases were diabetes mellitus (42.7%), hypertension (32.9%) and obesity (14.6%), followed by the iatrogenic risk factors such as a central venous catheter (76.8%%), intensive care unit (ICU) stay (75.6%) and broad-spectrum antibiotic usage (74.3%). There were no significant differences in underlying disease and iatrogenic risk factors among C. auris non-candidemia/colonisation and C. auris candidemia cases. The mortality rate of the total cohort is 44.4%, whereas, in C. auris candidemia patients, the mortality was 64.7%. CONCLUSION: This study shows that the prevalence of C. auris infections remains unchanged in the COVID-19 pandemic. Hospital-acquired risk factors may contribute to the clinical illness. Proper infection control practices and hospital surveillance may stop future hospital outbreaks during the pandemic.


Subject(s)
COVID-19 , Candidemia , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , COVID-19/epidemiology , Candida , Candida auris , Candidemia/drug therapy , Candidemia/epidemiology , Drug Resistance, Multiple , Humans , Iatrogenic Disease/epidemiology , Microbial Sensitivity Tests , Pandemics , Prevalence , Risk Factors , Treatment Outcome
19.
Clin Infect Dis ; 74(5): 812-813, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1703681
20.
Clin Infect Dis ; 74(5): 802-811, 2022 03 09.
Article in English | MEDLINE | ID: covidwho-1701306

ABSTRACT

BACKGROUND: The COVID-19 pandemic has resulted in unprecedented healthcare challenges, and COVID-19 has been linked to secondary infections. Candidemia, a fungal healthcare-associated infection, has been described in patients hospitalized with severe COVID-19. However, studies of candidemia and COVID-19 coinfection have been limited in sample size and geographic scope. We assessed differences in patients with candidemia with and without a COVID-19 diagnosis. METHODS: We conducted a case-level analysis using population-based candidemia surveillance data collected through the Centers for Disease Control and Prevention's Emerging Infections Program during April-August 2020 to compare characteristics of candidemia patients with and without a positive test for COVID-19 in the 30 days before their Candida culture using chi-square or Fisher's exact tests. RESULTS: Of the 251 candidemia patients included, 64 (25.5%) were positive for SARS-CoV-2. Liver disease, solid-organ malignancies, and prior surgeries were each >3 times more common in patients without COVID-19 coinfection, whereas intensive care unit-level care, mechanical ventilation, having a central venous catheter, and receipt of corticosteroids and immunosuppressants were each >1.3 times more common in patients with COVID-19. All-cause in-hospital fatality was 2 times higher among those with COVID-19 (62.5%) than without (32.1%). CONCLUSIONS: One-quarter of candidemia patients had COVID-19. These patients were less likely to have certain underlying conditions and recent surgery commonly associated with candidemia and more likely to have acute risk factors linked to COVID-19 care, including immunosuppressive medications. Given the high mortality, it is important for clinicians to remain vigilant and take proactive measures to prevent candidemia in patients with COVID-19.


Subject(s)
COVID-19 , Candidemia , COVID-19/epidemiology , COVID-19 Testing , Candidemia/drug therapy , Humans , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL